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A formulation of statistical mechanics of 
ordered systems 

Bruno Linder 1 and Rober t  A. K r o m h o u t  2 

Chemical Physics Program, Florida State University, Tallahassee. FL 32306-3006, USA 

Expressions are derived for the thermodynamic functions (Gibbs free energy, Helmholtz 
free energy, etc.) of an ordered system in terms of the single-particle distribution function, p(x), 
and correlation functions. The thermodynamic functions are treated as functionals of the sin- 
gle-particle distribution function. By minimizing the Helmholtz free energy with respect to p(x) 
under constraints of constant T, V and N, an integral equation is obtained from which p(x) 
can be determined. The correlation function of the ordered state in the region near the coexis- 
tence surface between ordered and disordered state is expanded about the correlation function 
of the disordered state, and the series is truncated. Methods for calculating the thermodynamic 
functions and the single-particle distribution function are presented, and our result is discussed 
in relation to other treatments of phase coexistence in the literature. 

1. I n t r o d u c t i o n  

This research was mot iva ted  by our recent investigations [1] into the theory  of  
nematic  liquid crystals. (Nemat ic  liquid crystals consist of  e longated (rod-like) 
molecules.  Like ordinary (isotropic) liquids, they lack long-range translat ional  
order; unlike ordinary liquids, they possess long-range orientat ional  order.) Vir- 
tually all t reatments  on nematic  ordering published to date are based  on Onsager 's  
pioneering work  [2], who approached  the problem by considering the system o f  
molecules to be a mixture of  angular  species, each confined to a part icular  orienta- 
tion. Character is t ic  o f  all the mixture model  theories is the presence of  a logarith- 
mic term fl f d ~ f ( f ~ )  lnf(f~) ,  wheref ( f~)  represents the fraction of  molecules with 
or ientat ion fL 

In our  approach,  the theory of  ordered states, o f  which one example is the 
nemat ic  state, is developed in terms of  dis tr ibut ion functions (without  recourse to a 
mixture model) .  We  obtain  two formulations,  one in terms of  one- and two-part i -  
cle dis tr ibut ion functions,  requiring an integrat ion over a coupling parameter ,  the 
other  in terms o f  multipart icle distr ibution functions in a cluster expansion. Our  
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expression leads directly to a two-term Gibbs free energy expression, one of which 
is the logarithmic Onsager term or rather a generalization thereof in terms of the 
one-particle distribution function. 

Our major objective is to develop practical means for evaluating the thermody- 
namic functions (Gibbs and Helmholtz free energies, etc.) of ordered systems. To 
this end, we treat the correlation function of the ordered system (e.g. nematic, 
solid) as a perturbation of the disordered system (i.e. isotropic liquid). This is an 
extension of an idea that originated with Kirkwood and Monroe [3] who, in their 
approach to the theory of fusion, assumed the pair correlation function of the two 
phases to be the same. 

Similar theories on phase transitions have been published in recent years. These 
are based on the work of Ramakrishnan and Yussouf [4-6], which is essentially a 
reformulation of the Kirkwood-Monroe theory in terms of the direct, rather than 
the ordinary, pair correlation function. In these treatments, the direct correlation 
functions of the two phases are assumed to be the same. 

In our treatment, following Bauss [7], we expand the pair correlation function 
g(2) (Xl, X2) of the ordered state, which we regard as a functional of the one-particle 
distribution function p0)(x), in a Taylor series around the disordered correlation 
function g~)(xl, x2), keeping terms to second order in Ap (1) (x) = pO)(x) - N / V ~ .  
Here xi describes the center of mass and orientation of molecule i, N is the total 
number of molecules, w = f d,Q and V is the volume. The expressions are formu- 
lated in the canonical ensemble. For the disordered state, p(1)(x) is a constant, and 
the g(~)(xl, x2) are relatively easy to calculate, say within the Percus-Yevick and 
hypernetted-chain approximations. 

In section 2, we derive expressions for the thermodynamic functions (the Gibbs 
free energy, the Helmholtz free energy and PV) for an arbitrary system (ordered or 
disordered). In section 3, we treat the thermodynamic functions as functionals of 
the single particle density, p(1)(x), and establish conditions for equilibrium. We 
develop expressions for the correlation functions as perturbations around the dis- 
ordered state and specialize the results to hard objects (hard spheres, hard rods, 
etc.). In section 4, we discuss ways to obtain p(1) (x) and the thermodynamic func- 
tions for single and for coexisting phases. In section 5 we compare our procedure 
with those in the literature. 

2. The free energy functions 

The chemical potential is in the limit as N -+ oe 

1 
# = - ~  lnQN/QN_I, 

where QM is the canonical partition function for M particles, 

(1) 
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( Q I ~  M 1 
QM = \ \ j  ZM. 

We write 

1 Qx 1 ZNpo 
# = - ~  In In , (2) 

Vpo t3 NWZN-1 

where V is the volume, P0 a unit density introduced solely for dimensional consis- 
tency, and 

ZN = f d x l . . ,  dxN exp(--/3UN). (3) 

UN is the total potential energy, assumed to be pairwise additive, i.e. 
UN = Y]~i<j u(xixj); xi represents the coordinate vector locating the center of mass 
of molecule i as well as its orientation; f dxi = Vw. Defining the configurational 
part of the chemical potential as 

1 PoZN 
#c = - ~ l n  (4) 

NwZN-1 

and the activity 

Q1 z = ~ exp(/3#) (5) 

it is easy to see, using (2) that 

P0 z = - -  exp(/3#c). (6) 
~o 

The configurational Gibbs free energy is 

Gc = N#c. (7) 

The configurational chemical potential and Gibbs free energy can be written 
also in terms of the single-particle distribution function. To this end we extend the 
definition of ZN to include ~, which couples the interaction of molecule 1 with 
every other molecule, and define p~)(Xl . . .  x,; ~) 

N! 
p~)(xl  . . .Xn;~) -- (N- n)! ZNI(~) 

/ dXn+l. . .dxN exp[--3Uu(Xl..-XN;~)], 0 ~ < ~ < 1 .  (8) × 

We get, on differentiating ln p(ul)(xl; ~) with respect to (, a relation between 
p(~) (Xl ;~) and p(~)(xl, x2; () which leads to 

1 ln[p(~)(x,)w/po] + d(  dX2U(XI,X2 ) p,l)-f--"-='~ (9) #c = -~ - -  • 
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It is noted that although the individual terms on the right-hand side of eq. (9) 
are dependent on xl, the sum of the terms in each equation is independent ofxl  (or 
any other coordinate) since #c is independent of coordinates. Accordingly, integra- 
tion over xl in eqs. (10), produces Gc = N#c as should be. 
The configurational Gibbs Free energy can be written as 

Gc= 7 dXlp~)(xi)ln[p~)(xi)wlPo}- 7 dx, 

where 

l p(:) (xl x2; ~) (11) 

The foregoing expressions are exact (within pairwise additivity) but require knowl- 
edge of the variation of the distribution functions with ~. 

Equivalent formulas without a coupling parameter can be obtained by consider- 
ing the fully coupled system of N particles (~ = 1). Suppressing the symbol 
~, p(N 1) (X1) can be written 

p~)(Xl) = ~U dx2. . .dxu exp[--flUu(xl ...XN)] 

N 
fd dx2. . ,  dxu exp[--wUu_l(X2. • XN)] exp - - 3 u E  ulj . 

Z N  j=2 
(12) 

Expanding the last factor in Mayer functions, 

f l .  = exp[-/3u(xl,x.)] - l ,  (13) 

we obtain a generalization of the Kirkwood-Salsburg expression [8], 

p(~)(xl) - N Z N - 1 E ( x l ) ,  (14) 
ZN 

where ~ (Xl) is now given as a cluster expansion, 

N-1 1 f l+s 
E(X l )  : ' + Z_, I I i l ° .  

- -  0 " = - - 2  

Note that NZN_ 1/ZN -= (POIW) exp(/3#c) = z and so eq. (14) can be written as 

p(~)(xl) = z E ( x l  ) (16) 

and thus 

1 ln[wp~)(Xl)/po ] _ 1 #c = ~ ~ In E ( x l ) .  (17) 

As previously remarked for eq. (9), #~ is actually independent of xi, in spite of the 
appearance of this formula. In general, the higher order distribution functions can 
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be expressed as products of the single particle distribution functions times the cor- 
relation function. Thus 

l+s 

p~)t(x2 •.. x,+.) = g~)_t(x2...Xt+s) H P(Jl (x.)' (18) 
~-----2 

where g~)-l is the correlation function of s particles in the N - 1 particle system. 
Since N is very large, there is negligible distinction for s<<N between p~! , and p~) 
and we shall henceforth replace all p~) 1 by p~). Finally, "" " 

~ /  I f  Gc=  dxlp~)(xl)ln[wp~)(x)l)/po]--~ dxlp~)(xl)ln y'~(xl),  

in which ~ (Xl )  is now expressed as a cluster sum, eq. (15), or as an integral over a 
coupling parameter, eq. (11). The quantity l n ~ ( x l )  is sometimes referred to as 
the single-particle direct correlation function, although it contains distribution 
functions as well as correlation functions. 

The pressure can readily be determined from p(u 2) and the intermolecular poten- 
tial, yielding the following generalization of the well known pressure equation: 

/3 1 dxl dx2rl2OU(Xl'X2)p(~)(Xl'X2)'Orl2 (19) 

where r12 is the distance from the center of mass of molecule 1 to that of mole- 
cule 2. 

Finally, the configurational Helmholtz free energy is obtained by combining 
(11) and(19), 

Ac = Gc - PV,  (20a) 

1 .. / .x, > / .., ,n V. > 

"+~/dx, /dx'"'O'(x"x'>'<'>('1'x'>'~>(x'>'~'(x'> (.0b> 
/3 Or~2 " 

We have thus far characterized all distribution functions by the subscript N, indi- 
cating that they are canonical distribution functions for fixed N. We shall hence- 
forth supress the subscript N but retain the meaning of p(n) as distribution functions 
in the canonical ensemble. 

3. The thermodynamic  potentials as functionals of p (1) (x) 

We treat the potentials as functionals of the one-particle (or local density) distri- 
bution function pO)(x), which is to be determined by minimizing the Helmholtz 
free energy under constraint of constant T, V, and N .  
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The functional derivative of the configurational Helmholtz free energy with 
respect to p(1) (x) is defined by 

~Arc Ac~o(1)(x) + 5p(1)(x)] - AeLo(')(x)] 
lim (21a) 

5fl(1) ( x ) f dxSp(x)~O f dxSfl(l)( X ) 

But f dx 5p(x) = 5N, so 

6Ac (OAc'~ 
- = #c at equilibrium. (21b) 6p(1)(x) \O-N] r,v 

On the other hand, 

f (Ix SAc 
SAc = j 5pil)(x) 5p(1)(X) (22a) 

= # c f f  dx 5p (1) (x). (225) 

Under conditions of constant N, this can be written 

= # c s [ f  dxp(l)(x) - N] = 0. (22c) 5A~ 

This demonstrates [6] that the Lagrange multiplier for the variation of Ac under 
condition of constant N is #c: 

8[Gc - P V -  #c(f  dx p(')(x) - N)] = 0 (23a) 
6p(~)(x) 

or  

8[G~- PV] 
6p(~)(x) p c = 0  (23b) 

or  

5[a~- Pv] 
5p(1)(x) - Pc at equilibrium. (23c) 

From eqs. (19) and (20), 

_ 1 {lni p ,/ix//p0j_l n OpI,l(x) 

(24a) 
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O[PV] _ 1 fdx~ I r - r l l  Ou(x,x~) Op(l)(x) 3/3 __ ~([r--~) P(1)(x')g(2)(x'x') 
/ / ~)g(2)(XlX2) 

1 r12 ~ p(1)(xl )p(1)(x2) ' (24b) 6/3 dx1 dx2 0r12 8p(1) (x) 

The two leading terms in (24a) are #c and so, using (20), (21), (23) and (24) we 
obtain the differential-integral equation 

½ / dx' r'30~u~13p(')(x')g(2)(x''x3)orl3 
0U12 8g (2) (Xl, X2) +-~fdxl f dx2rl2~rx2pO)(xa)pO)(x2) -~p(]--)(x~ 

= dx1 ~--]~(Xl) 8p(1)(x3 ) 1. (25) 

We assume that the g's are known, or can be approximated, Our task is to find 
p0) (xl) which satisfy eq. (25). 

3.1. THE ORDERED CORRELATION FUNCTION AS A PERTURBATION OF THE 
DISORDERED CORRELATION FUNCTION 

The g(a),s that appear in (25) have been evaluated to a high degree of accuracy 
for hard spheres and hard rods in the disordered state, but virtually no reliable cal- 
culations are available for the ordered state. Extending the original suggestion of 
Kirkwood and Monroe [3], we expand the ordered g's and their derivatives around 
their disordered values, and write 

~g(2) (Xl, X2) ~X g('/(x,, x~)~ g~)(~a, ~.) + / Ap(l)(~) 
D 

82g( 2)(x~, x2) ] + af ApO)(x) ~,[ Ap0)(x l) 8p-(i] (--~) ~pil-) (~) ] dx dx' ,  (26a) 
D 

8g (2) (Xl, X2) __ 8g (2) (Xl, X2) f Ap(1)(xt ) 82g (2) (x1, x2_)) 
8p(1)(x) 8pO)(x) D + 8pO)(X) 8pO)(x') D 

dx' 

and analogous expressions for ~ ( x l ) ,  

D {~/9(1) (X) D 

(26b) 

+f A/1)(x) f 5¢1)(x,) D dxdx'' (27a) 
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OE(x, ) 8Y](Xl) + [ 02E(xl) I 
8pO)(x) -- - 8 ~  D J AP(1)(x') 8P(I)(x) 8pO)(x') D dx' '  (27b) 

where, for example, Ap0)(x) = p(1)(x)- N/Vw and subscript D denotes disor- 
dered state. 

From the general definition of p(2)(xl, x2) in cluster form #1, it is easy to estab- 
lish that 

1 
gI~/(x~,,c2)- E(x~) - - ( 1  "+-)q2)[1 + f dx3fl3p(1)(x3)g(2)(x2, x3) 

+::½ f dx3 f dx4fl3fl4p(l)(x3)p(1)(x4)g(3)(x2,x3, x4)+...] (28a) 

yielding 

~g(2) (Xl, X2) g(2) (Xl, X2) ~ ~(Xl) 1 
- (1 + A 2 )  ~p(x) E(x~) 5p(,l(x) 

× If (X, X 1 )g(2)(x2, x)! + J dx3Jq3p (1) (X3) 
1 8g(2) (x2, x3) ~- O(g(3))| (28b) 

5pI1)(x) J 

52g(Xl,X2) 
(~,D (1) (X) ~p(l)(X") 

1 8g(xl,xz) g(2) (Xl, X2) 8 ~(Xl)  5 ~(Xl )  
[E(x~)]~ ~p/l/(x) ~p(~l(x,) E(x,)  spI~/(x,) 

× ~E(x~) gI21(x~,x2) ~2E(x~) _ l SE(x~)(1 +A2) 
~/0(1) (x) E(x1) ~p(1)(x)~p(i)(x t ) [E(x,)]2 ~p(1) (x t ) 

(1 +f12) I ~g(2)(X2'X) ~-f(xt'Xl)~g(2)(X2'Xl) 
q ~(Xl)  f ( x l , x )  fip(1)(X, ) 5p(l)(x) 

× S dx3fl3pOl(x3) 62g(x2'X3) .] 
5pI,l(x) ~p/lt(x,)] " (28c) 

From the cluster definition of ~--2~ (xl) (eq. (15)) one obtains 

#1Ref. [8], p. 255. 
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E(X1)  =1 q- j dx2fl2p(1)(x2) 

+ ½ f dx2 i dx3fl2fl3p(l)(x2)p(i)(x3)g(2)(x2'x3)' 

65 

(29a) 

8 E(xl) P 

=f(x l ,  x) + / dx2flzf(xl, x)p (1) (x2)g (2) (X2, X)i 

+ . . .  , (29b) 

82 ~_,(xl) =f(xl ,  x')f(xl, x)g(2)(x ', x)! 
8p(1) (x) 

q- J dx2fl2f(Xl, x)p (1) (x2) 
8g(2) (X2, x) 

+ . f  dx2dqzf(x, x')p (1) (x2) 
8g(2) (X2, x') 

8p(1)(x) 

q_l J dx2 J dx3fizfl3p(l)(x2)p(1)(x3) ~)2g(2)(X2'X3) -I-.•• (29c) 
8p(~)(x)Sp(~) (x') 

Although the expressions for (g)(Z)(xl,x2) in (26) and its analog for ~(Xl)  are 
given to order (Ap) 2, there is a difference in the magnitude of the individual terms. 
Thus, 82~(xl)/Sp(1)(x)Sp(1)(x ~) is equivalent in magnitude to 8g(2)(xl, 
x2)/Sp(l)(x) but 82g(2)(x2,x3)/Sp(1)(x)8p(1)(x ~) is smaller and can be dropped• 
Terms with a large number off-factors tend to be small and probably contribute 
little. Hence, in first approximation, we delete the terms to the right of the vertical 
dashed lines in (29a)-(29d). 

Within these approximations g(xl, x2) simplifies to (from this point forward we 
drop the superscripts on p(x) and g(x, x ~) for simplicity since we do not include 
p(n) org(n+l) f o r n >  1) 

I ( " )  g(Xl, X2) ~ gD(Xl, X2) q- dx3 n(x3) - -~w 

X (--fl3gD(Xl, X2) q- (1 q-fl2)fl3gD(X2, X3) q-. . .)  - (30) 

The quantity within the square bracket is 8g(xl, x2)/Sp(x3)ID. Similarly, 1/Y~.(xl) 
reduces to 
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l 1 I 1./dx2(p(x2)_ N)] 

x [f12 + (~-~) f dx4f,4f12gD(x4,x2)] . (31) 

We now return to eq. (25). It is noted that for the disordered states 

2 N / d x ,  OU13 " N2 f f OU12 (Og(Xl~-X2)~ Vw__ rl3~rl3gD[xl'x3)+-V-~w2jdxljdx2r'Z~rl2 \ 6 p ( x 3 ) J D  

_ 6N f d x , ~ Y ' ~ ( x ' )  - 6  (25') 
VC0ED J ~p(X3) D " 

If we write p(xi) = Ap(xi) + N~ Vw, expand all the functionals about the disor- 
dered state at the same density N/V [see eqs. (28), (29)], in powers of Ap(xi) then 
the zeroth order term, eq. (2Y), can be dropped, leading to 

2 dxl rl3~rl3aP[Xl) D(XI, X3) + dx2Ap(x2) 

X (--gD(Xl,X3) + (1 +fl2)fl3gD(X2, X3) 

N/ f + V  dXl d~,-l~0-;S[Ap(x~ ) + Ap(x~)] 

1 
X ~---~.n[--gD(Xl,X3)fl 3 4- (1 4-U12)TI3gD(X2,X3)] 

OU12 
4- f dx1 f dX2rl2~rl2 Ap(X1)Ap(X2)[-gD(XI'X3)fl3 

1 2Nf  OUl3fOrl3 J + (1 +fl2)A3gD(x2, x3)] ~-~ + dx~ r~3 ~2  Ap(x2) 

__1 
× ~-~[-A2g~(x,,x3) + (1 +A3)fl2gD(x2,x~)] = dx, Ap(xl)fl~ 

6 / dxl / dx2 Ap(xl)Ap(x2)f12f13gD(x2, x3) 

2 2  dx2 Ap(x2)f12f13 + dx2 Ap(xl)Ap(x2)f:zfl3 • (32) 

3.2. APPLICATION TO HARD OBJECTS 

For hard spheres, 
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fl du(r12) _ exp[flu(r12)]6(r12 - cr), (33) 
dr12 

where cr is the collision diameter. The delta function is the limiting value as r 
approaches ~r from the side r12 > Cr. 

For other hard objects, such as hard rods, having orientation angles ~')1 and f22, 
and internuclear distance vector tiE , we may generalize the above result by consid- 
ering the coordinate of particle 2 relative to the center of 1, which requires repla- 
cing x2 by Xl + a12712, where 712 is the unit vector in the direction of r12 and Crl2 is 
now a function off21, f22 and ?12. The pressure equation then becomes 

N 1 PV =~+~ / d~l J d 2fd?12o3112( gl, 2;?12)p(x1)p(rl+Crl2?12; 2) 
x g[cr12(f21, f22; r12)], (34) 

~p(l)(x3) -- 33 di"13 d~l 43Ap[(r3 + °13i'13)' ~21] D (°'13) 

1 
+ f dr23 f df22Ap(r2, f22)( gD(tT13)}-~DDf23gD(r23'~3'~d2))]ED 

;fdrl fd-Ql/dh2 fd 2 2 
x - ~  [Ap(rl, ~1) + Ap(rl + a12?12, ~2)] + Ap(rl, f21)Ap(rl - ~12?12, ~2) 

× [  gD(O'12)'C~DD __1 f23)J (35) j13 + A3gDIr,3-  12712, -2,  

Thus, when hard objects are used the sum of the terms preceding the equal sign in 
(32) should be replaced by (35). 

4. Evaluating thermodynamic functions and the single-particle distribution 
function 

The use of the formulas we have developed herein requires knowledge of the 
two-particle correlation function gD (X, x') for each of the densities, N~ V, of inter- 
est. Values are available in the literature, notably for hard spheres [9], hard ellip- 
soids [10], and certain cases of Lennard-Jones spheres [11], for example. From gD, 
the calculation of PV for the disordered state is straightforward, as is the estima- 
tion of ~ D  from the first three terms of the Kirkwood-Salzburg expansion, eq. 
(29a). From these the thermodynamic potential A(T, V, N) is easily calculated, 
from eq. (20), and thus all thermodynamic functions are available. 

At this point one can construct eq. (32) from which Ap(x) can be obtained. 
Then g(x, x j) can be calculated from eq. (30) and then ~ ( x )  for the ordered state 
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from eq. (29a), and the Helmholtz free energy from eq. (20). Once the thermody- 
namic potential A(T, V, N) is known for the ordered state, all thermodynamic 
functions can be calculated. 

If one wishes to focus only on the coexistence region, an alternative approach is 
to set the chemical potential of the disordered and ordered phases equal to each 
other. This results in an integral equation, 

D D 

from which p(x) can be determined for the ordered state. The mean density, N~ V 
for the ordered state is determined by this solution; since the correlation functions 
appearing in the series for ~ ( x )  are functions of N~ V, there is a self-consistency 
condition to be satisfied as part of the solution process. Once p(x) has been calcu- 
lated as a solution of the integral equation, P can be calculated for both phases. 
This can be repeated for various values of (N/V)D until the pressures of the two 
phases are equal. Thus with equality of both the chemical potential and the pres- 
sures of the two phases ensured, the Helmholtz free energy can be calculated for 
both phases at coexistence, and all the thermodynamic functions are known there. 
Of course, if more than one nontrivial p(x) is found (the trivial value being 
(N/V)D everywhere), the solution corresponding to the lowest value of the Helm- 
holtz free energy is the correct one. 

In fact, this procedure can be used within a single phase by setting 
p(x) = (Po/~) ~ (x )  exp(fl#c) and solving this integral equation for various values 
of #e, ensuring that the solutions correspond to consistent values of N~ V. Then P 
and the Helmholtz free energy can be calculated and, if necessary, those solutions 
discarded which do not correspond to minimum Helmholtz function for given N, T 
and V. 

5. Alternative approaches 

One alternative to the above procedure avoids the use of the series form of 
~ ( x )  by using the coupling integral form, eq. (11). This would require knowledge 
ofg(xl ,  x2); ~), which could possibly be obtained from a Percus-Yevick, molecular 
dynamics or Monte Carlo calculation. Minimization of the Helmholtz free energy 
appears very involved, but the coexistent phases (or fixed chemical potential) pro- 
cedure outlined above could be used, correcting the correlation function for the dif- 
ference between ordered and disordered states by a generalization of the 
Kirkwood formula #2 in the superposition approximation: 

#2Ref. [8], sections 31 and 32. 
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lng(xl,x2;~) = -~u12 + fo~d~ ' f dx2ul2gD(xl,x2;~')o 

I ' /  - d~' dx3 p(x3)gD(Xl, X2; ~')gD(Xl, X3;~')gD(X2, X3). 

Another approach that has been used [4-6] involves the Ornstein-Zernicke 
direct correlation function, c(xl,x2) instead of the total correlation function 
g(x~, x2). The advantage of this approach is that the direct correlation function is 
the first functional derivative of ln )-~'~ (xl) with respect to p(x2). In principle, there- 
fore, it corresponds to a sum of the terms in the series form of the functional deriva- 
tive. However, higher derivatives of In )--~(xl) are not readily available, and the 
technique for determining p(x) is necessarily the coexistent phase (or fixed chemi- 
cal potential) procedure. In addition, the direct correlation function has been deter- 
mined by the Percus-Yevick or hypernetted-chain approximation which assumes 
a simple relation (in the Percus-Yevick simply multiplication by exp[flu(1,2)]) 
between g(xl, x2) and c(xl, x2), which effectively removes the three-body contribu- 
tion to the relationship, whereas in our expression some three-body contributions 
are included. 

6. Discuss ion 

The theory presented in this paper as well as the alternative discussed briefly in 
section 5 fall into the category of theories of ordering which treat the ordered phase 
as a perturbation of the disordered state. All such theories share some common lim- 
itations. 

First, the range of N~ V for which the procedure can be carried through corre- 
sponds roughly to the region ofmetastable states of the two phases in the neighbor- 
hood of the coexistence surface. The neighborhood of a critical point is not well 
approximated by such theories, afortiori. 

Second, the convergence of the various expansions and the accuracy of their 
truncations is not well understood. The convergence does appear to depend on the 
packing fraction and thus the procedures may be much more effective for long 
thin molecules than for hard spheres, for example. 

Third, they are based on the assumption that g(x, x') is an analytic functional 
of p(x") on the coexistence surface. Even should this turn out to be incorrect, our 
analysis would be correct to the extent that differences between g and gD as well as 
8g/Sp and (Sg/Sp) D are negligible; this is a reasonable extension of the Kirk- 
wood-Monroe  approximation. 
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